5 research outputs found

    Microbleeds, Cerebral Hemorrhage, and Functional Outcome After Stroke Thrombolysis: Individual Patient Data Meta-Analysis

    Get PDF
    BACKGROUND AND PURPOSE: We assessed whether the presence, number, and distribution of cerebral microbleeds (CMBs) on pre-intravenous thrombolysis MRI scans of acute ischemic stroke patients are associated with an increased risk of intracerebral hemorrhage (ICH) or poor functional outcome. METHODS: We performed an individual patient data meta-analysis, including prospective and retrospective studies of acute ischemic stroke treated with intravenous tissue-type plasminogen activator. Using multilevel mixed-effects logistic regression, we investigated associations of pre-treatment CMB presence, burden (1, 2-4, ≥5, and >10), and presumed pathogenesis (cerebral amyloid angiopathy defined as strictly lobar CMBs and noncerebral amyloid angiopathy) with symptomatic ICH, parenchymal hematoma (within [parenchymal hemorrhage, PH] and remote from the ischemic area [remote parenchymal hemorrhage, PHr]), and poor 3- to 6-month functional outcome (modified Rankin score >2). RESULTS: In 1973 patients from 8 centers, the crude prevalence of CMBs was 526 of 1973 (26.7%). A total of 77 of 1973 (3.9%) patients experienced symptomatic ICH, 210 of 1806 (11.6%) experienced PH, and 56 of 1720 (3.3%) experienced PHr. In adjusted analyses, patients with CMBs (compared with those without CMBs) had increased risk of PH (odds ratio: 1.50; 95% confidence interval: 1.09-2.07; P=0.013) and PHr (odds ratio: 3.04; 95% confidence interval: 1.73-5.35; P10 CMBs independently predicted poor 3- to 6-month outcome (odds ratio: 1.85; 95% confidence interval: 1.10-3.12; P=0.020; and odds ratio: 3.99; 95% confidence interval: 1.55-10.22; P=0.004, respectively). CONCLUSIONS: Increasing CMB burden is associated with increased risk of ICH (including PHr) and poor 3- to 6-month functional outcome after intravenous thrombolysis for acute ischemic stroke

    Cerebral perfusion using ASL in patients with COVID-19 and neurological manifestations: A retrospective multicenter observational study

    No full text
    Background and purpose: Cerebral hypoperfusion has been reported in patients with COVID-19 and neurological manifestations in small cohorts. We aimed to systematically assess changes in cerebral perfusion in a cohort of 59 of these patients, with or without abnormalities on morphological MRI sequences. Methods: Patients with biologically-confirmed COVID-19 and neurological manifestations undergoing a brain MRI with technically adequate arterial spin labeling (ASL) perfusion were included in this retrospective multicenter study. ASL maps were jointly reviewed by two readers blinded to clinical data. They assessed abnormal perfusion in four regions of interest in each brain hemisphere: frontal lobe, parietal lobe, posterior temporal lobe, and temporal pole extended to the amygdalo-hippocampal complex. Results: Fifty-nine patients (44 men (75%), mean age 61.2 years) were included. Most patients had a severe COVID-19, 57 (97%) needed oxygen therapy and 43 (73%) were hospitalized in intensive care unit at the time of MRI. Morphological brain MRI was abnormal in 44 (75%) patients. ASL perfusion was abnormal in 53 (90%) patients, and particularly in all patients with normal morphological MRI. Hypoperfusion occurred in 48 (81%) patients, mostly in temporal poles (52 (44%)) and frontal lobes (40 (34%)). Hyperperfusion occurred in 9 (15%) patients and was closely associated with post-contrast FLAIR leptomeningeal enhancement (100% [66.4%-100%] of hyperperfusion with enhancement versus 28.6% [16.6%-43.2%] without, p = 0.002). Studied clinical parameters (especially sedation) and other morphological MRI anomalies had no significant impact on perfusion anomalies. Conclusion: Brain ASL perfusion showed hypoperfusion in more than 80% of patients with severe COVID-19, with or without visible lesion on conventional MRI abnormalities

    Abstracts

    No full text
    corecore